
Dementia Diagnosis Classification Using Deep Learning Neural Networks Based on Clock Drawing Test (CDT) and Medicare claims
Mengyao Hu
Assistant Research Scientist, Survey Research Center, Institute for Social Research
Co-Investigators
- Yi Lu Murphey, University of Michigan-Dearborn
Abstract
This pilot study will develop advanced deep learning neural networks to analyze Clock-Drawing Test images to predict dementia diagnosis. The pilot will draw upon Medicare claims linked with a large, publicly available repository of clock images from the 2011-2019 National Health and Aging Trends Study, a panel study of Medicare beneficiaries ages 65 and older.
Outcomes
- Hu, M., Murphey, Y.L., Wang, S., Qin T., Zhao Z., Gonzalez, R., Freedman V. A. & Zahodne L. (July 2023) Exploring the Use of Deep Learning Neural Networks to Improve Dementia Detection: Automating Coding of the Clock-Drawing Test. 2023 European Survey Research Conference, Milan, Italy.
- Hu, M., Murphey, Y.L., Wang, S., Qin T., Zhao Z., Gonzalez, R., Freedman V. A. & Zahodne L. (May 2023) Exploring the Use of Machine Learning to Automate the Coding of the Clock-Drawing Test. 78th American Association for Public Opinion Research Annual Conference. Philadelphia.
- Hu, M., Murphey, Y.L., Wang, S., Qin T., Zhao Z., Gonzalez, R., Freedman V. A. & Zahodne L. (Nov 2022) Exploring the Use of Deep Learning Neural Networks to Improve Dementia Detection: Automating Coding of the Clock-Drawing Test. Gerontological Society of America (GSA) Annual Scientific Meetings 2022, Indianapolis.
- Hu, Mengyao; Murphey, Yi Lu; Wang, Song Qin Tian; Zhao Zixuan; Gonzalez, Richard; Freedman Vicki A.; Zahodne Laura (2022) Exploring the Use of Deep Learning Neural Networks to Improve Dementia Detection: Automating Coding of the Clock-Drawing Test. NHATS/NSOC Research in Progress Seminar, Ann Arbor, Michigan.